Preparation of Isocyanates.--. A suspension of the azide (2.2) manoles) in tohneme (50 mb) was refluxed for 6 hr , chithed, and

 and Vb exhibited an infrared peak at $2.280 \mathrm{~cm}^{-1}$.

Isobuty N -[2-(2,4-Dihydroxy-6-methyl-5-pyrimidyl)-l-ethyl] carbamate (VIa).-A solution of the isocyanate $\mathrm{Va}(0.3 \mathrm{~g}, 2.6$ mmoles) in $i-\mathrm{BnOH}$ (50 ml) was reflnsed for 6 hr and rooled to give $0.3 \mathrm{~g}\left(45^{\circ} ;\right)$ of tia, inp $233 \cdots 34^{\circ}$. The infrared spertiom was as expected.

Inal. Caled for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, i3.33; H: 万.l|: N , li.60. Fonnd: C, $33.38 ; H, 7.33 ;$ N, 15.31

Preparation of Ureas.-A sohntion of ethyt p-aminobenzonte or diethyd p-aminobenzoyl-L.glutamate (10 monoles) and isocyanate (4.5) immoles) in dry ${ }^{10}$) MF (25 ml) was heated (on a steam bath for 20 hr , evaporated in vacuo to $\dot{3} \mathrm{ml}$, and poured into toluene (2001111). The precipitated solid was recrystallized from dioxane If, (and FitOH-H2O to give the substituted urea. See T: Sble II,
 (10 n mil) al 25° for is hre. The chilled sohtion was nentratized with $6, Y \mathrm{HCl}$ to give the free acid. The crnde material was purified by dissolving in $2 \% \mathrm{NaHCO}_{3}$, treatment with Norit, and precipitation with $6 \mathrm{~N}^{-} \mathrm{HCl}$. See Table III. The infrared pertrim of the acids and their ethyl esplem were an expected.

Substituted 1-Benzyl-3-(N,N-diethylcarbamoyl)piperidine Cholinesterase Inhibitors. Relationships between Molecular Constitution, $\mathbf{p} K_{\mathrm{a}}{ }^{\prime}$ Values, and Partition Coefficients ${ }^{1}$

Roxild P. Qu*NiANA ANi) W. Ronatid Smithfield
Department of Medicinal Chemistry, Unitersity of Tennessee College of Pharmacy, Memphis, Tennessee 3810.3

Receivel Mareh 16, 1997

During the past several years, appreciable efforts have been made to explore relationships between the molecular constitution of carbamoylpiperidines and their physicochemical properties, as well as between the latter two and the biochemical response of these entities in isolated cholinesterase systems. ${ }^{2-4}$ In this specific instance, we have designed a series of compounds which would enable us to study the effect of electron-density changes around the heterocyclic nitrogen of the piperidine derivatives. In addition to anticipating the evaluation of their effect upon isolated butyrylcholinesterase, ${ }^{5}$ we were interested in determining the influence our structural modifications

[^0]wonld exert in terms of lipophilic lipophobic characteristics
 benzel-3-N.N-diethytarbanoypperidine hydrobromides with methyl. methoxy: chloro, and nitro sut)stituents located in the meta and para positions (see Table I). We have detemined the phis' values and apparent partition cacfficients ($\mathrm{CHC} \mathrm{l}_{8}$ water) of Herer componnds and of the musubstituted hemay derisatives with the expectation that the valnes would reflect the relatire influence each substitnent has upon dectron density at the heterocyclie nitrogen and nown lipo-philic-lipophobic characteristics, respectivel,

Experimental Section

Synthetic Work --. - Host of the substituted-benz-l hatide required as internediates were commercially avaibable (Aldrich Chemicat Cal. p-Aethosybumy bomide, m-methoxyenzy bromide, and p-chlorohenzyt bromide were prepared from the corresponding atcohols by the methoo of Bead and Hanser." In the later instances, the ernde prodncts were nsed in the subsequent reactions.

The compounds disted in lable 1 were brepared tyy the fothosing methods.

Method A. 1-Benzyl-3-(N,N-diethylcarbamoyl)piperidine Hydrobromide (I) - - The procedure described is matterned after that employed by Beasdey, et al.: for the preparation of 1 atkytmbanoytpiperidine derivacives. To at cold rohntion of

 in $\mathrm{i}_{0} \mathrm{~m}$ m of the hatter was added slowty with stiming. the reation mixture was reflnced for ion har,* after removat of the solvent by filt ration for decantation i, the prothe was disonter in 50\%;

 atalyst was removed by filtation, and oolvent was removed hy distillation mader redured pressure. The rexidne was treated with 1001.1 of rold 40%, WOH, and the mintinte was extracted with benzene. The embined benzene ext racts were dried ($\mathrm{Mg} \mathrm{gO}_{4}$. and filtered, and the benzene was removed be distiltation ander reduced f-ressure. The prodnet was diwotved in anhyodrons ether and converted to the hydrobromide by the addition of at ohlition of dry HBr in anhydrons ether. 'The sath war doen recrystallized from aboohte ethanol anhydrons ether.

Method B. 1-(p-Nitrobenzyl)-3-(N,N-diethylcarbamoyl). piperidine Hydrobromide.-- The procedure described is patternest after that used by Quinana, ot al.." for whe preparation of other N.N-diethymipecotanide derivanives. t'o a cold, stired mix-

 p-nitrobenzy tromide ($49.0 \mathrm{~g}, 11.29$ - mole) was added sowly. The reaction mixtme was gradnally wamed and was smbsequentirefluxed for fo har with stirring. Atter cooling, the nimetnre was
 separated and the duluens layer was extmated with benzend. The benzene solntion was dried ($\mathrm{Mg}_{\mathrm{g}}^{\mathrm{S}} \mathrm{O}_{4}$) and fittered, and the solvent was removed by distillation minder: rednced pressine. The oily residne was dissolved in absolnte ethanol-anhydronether and was rented with a sohntion of dry HBr in :mhydronether. The sali was recrystallized fom absolnte ethanol.

Determination of $\mathbf{p} K_{\mathrm{a}}{ }^{\text { }}$ Values.-- A Radiometer TTIIe :a11ımatio titrator equipped with : sBUla syinge buret, a K401 calomel electrode, and il G202c ghass electrode was employed. The reaction vessel was themostated at $20.00 \pm 0.05^{\circ}$ by water fron a Hetotherm Nodel G23K circmlating bath; it was provided. also, with a rotor for nechanical stirring. The instrument wat
 use.

:) J. G. Reaslev, R. P. Quintana, anf G. G. Nelmes, I. MG. Chem., 7. 698 (1964)
(8) The reflux period employed for oither compounds prepared by hith muthod varied from 6 to is hl .

Table I

								$\bigwedge_{\mathrm{CON}(\mathrm{C}}$	$\left.\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$							
Compd	R	Method of prepn	Yield. $\%{ }^{a}$	Recrystn solvent ${ }^{b}$	$\underset{{ }^{\circ} \mathrm{Mp}_{\mathrm{C}}^{\mathrm{c}} .}{ }$	Formula ${ }^{\text {d }}$	$\underset{\text { Caled }}{\mathrm{C}}$	$\%$ - Found	$\overbrace{\text { Calcd }}^{\mathrm{H}}$	$\%$	$\overbrace{\text { Caled }} \mathrm{Br}$	$\begin{aligned} & \text { r. } \%- \\ & \text { Found } \end{aligned}$	$\overbrace{\text { Caled }}^{C l}$	Found	$\overbrace{\text { Caled }} \mathrm{N}$	$\frac{7}{\text { Foind }}$
,	H	A	32.6	E-EE	$213.5-214.2 \mathrm{dec}$	$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}$	57.46	57.60	7.66	7.81	22.49	22.42			7.88	7.92
II	$p-\mathrm{OCH}_{3}$	A	70.1	E-EE	$196.6-197.6$ dec	$\mathrm{Cl}_{18} \mathrm{H}_{29} \mathrm{Br} \mathrm{N}_{2} \mathrm{O}_{2}$	56.10	56.12	7.59	7.57	20.74	20.81			7.27	7.07
III	$m-\mathrm{OCH}_{3}$	A	36.2	E-EE	186.4-187.6 dec	$\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{Br}^{(1)} \mathrm{N}_{2} \mathrm{O}_{3}$	56.10	56.25	7.59	7.71	20.74	20.90			7.27	7.21
IV	$p-\mathrm{CH}_{3}$	A	32.9	E-EE	194.3-194.9 dec	$\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{Br}^{-} \mathrm{N}_{2} \mathrm{O}$	58.53	58.66	7.91	8.01	21.64	21.52			7.58	7.63
V	$m-\mathrm{CH}_{3}$	\pm	52.9	E-EE	159.6-160.2	$\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{O}$	58.53	58.51	7.91	8.00	21.64	21.51			7.58	7.61
V'I	p-Cl	A	38.8	E-EE	259.3-260.2 dec	$\mathrm{C}_{77} \mathrm{H}_{26} \mathrm{BrClN}_{2} \mathrm{O}$	52.38	52.52	6.72	6.51	20.50	20.61	9.10	9.25	7.19	6.90
V11	m-Cl	-	44.3	E-EE	$222.9-223.6$ dec	$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{BrClN}_{2} \mathrm{O}$	52.38	52.63	6.72	6.68	20.50	20.50	9.10	9.15)	7.19	6.96
VIII	p-NO:	13	60.6	E	218.1-219.3 dec	$\mathrm{C}_{77} \mathrm{H}_{26} \mathrm{Br}^{2} \mathrm{~N}_{3} \mathrm{O}_{3}$	51.00	51.05	6.55	6.53	19.96	19.95			10.50	10.51
IX	m-NO.	13	82.4	E	224.3-225.j dec	$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{Br} \mathrm{N}_{3} \mathrm{O}_{8}$	51.00	51.13	6.55	6.38	19.96	20.15	\ldots	\cdots	10.50	10.72

${ }^{*}$ Yield was determined after one recrystallization. ${ }^{b} \mathrm{E}$, ethanol; EE, ethyt ether. ${ }^{c}$ Melting points were determined with a Bïchi melting point apparatus; they are corrected. dinalyses were performed by Drs. G. Weiter and F. B. Stranss, Oxford, England.

Tible II
$\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ Values of Substituted
 Hydrobromides ${ }^{a}$

			$\overbrace{\mathrm{CON}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}}$	
Compd	R	$\mathrm{p} K_{\mathrm{a}}{ }^{\prime} \pm \mathrm{SD}^{\text {b }}$	$\begin{gathered} \left(K_{\mathrm{a}}{ }^{\prime} \pm \mathrm{SD}\right) \\ \times 10^{8} \end{gathered}$	Harnmett σ constant ${ }^{\text {c }}$
I	H	$\overline{7} .81 \pm 0.01$	$1 . \dot{y} \pm 0.03$	0
II	$p-\mathrm{OCH}_{3}$	7.98 ± 0.03	1.04 ± 0.06	-0.268
III	$m \cdot \mathrm{OCH}_{3}$	$\overline{7} 71 \pm 0.04$	1.97 ± 0.15	0.11\%
IV'	$p-\mathrm{CH}_{3}$	7.91 ± 0.05	1.23 ± 0.13	-0.170
V	$m \cdot \mathrm{CH}_{3}$	7.86 ± 0.03	1.39 ± 0.08	-0.069
VI	$p \cdot \mathrm{Cl}$	7.03 ± 0.03	2.82 ± 0.18	0.227
\II	$m \cdot \mathrm{Cl}$	7.38 ± 0.04	4.18 ± 0.34	0.373
VIII	$p-\mathrm{NO}_{2}$	6.90 ± 0.02	12.5 ± 0.4	0.778
IX	$m \cdot \mathrm{NO}_{2}$	6.90 ± 0.02	12.7 ± 0.5	0.710

${ }^{a}$ In aqueous solution at $2 j^{\circ}$. ${ }^{b}$ Standard deviation. ${ }^{\text {c }}$ Summarized from a paper by McDaniel and Browil. ${ }^{11}$

Analytically pure samples of the compounds, previously dried for 8 lir at $100^{\circ}(0.1 \mathrm{~mm})$, were used to prepare $1.50 \times 10^{-3} \mathrm{M}$ solutions in CO_{2}-free redistilled water. Ten-milliliter aliquots were transferred by pipet into the reaction vessel and titrated with $0.02 \mathrm{~N} \mathrm{NaOH}, \mathrm{pH}$ being read approximately 1.5 sec after the addition of each portion of titrant. Purified N_{2}, which had been passed, successively, through 0.02 N KOH , concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, and distilled water, was allowed to flow continuously over the surface of the solution to minimize absorption of CO_{2}.
The $\mathrm{p} K_{\mathrm{a}}^{\prime}$ ' value was determined by reading the pH at halfneutralization (on the titration curve), after the equivalence point was determined from a plot of $\Delta \mathrm{pH} / \Delta$ volıme of titrant $v s$. volume of titrant. ${ }^{9}$ Normally; the results of four independent determina. tions were insed to calculate the average $\mathrm{p} K_{\mathrm{a}}{ }^{\text {. }}$.
Determination of Apparent Partition Coefficients.-The method of Quintana ${ }^{20}$ was employed except that the compounds were partitioned between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$ which had been previously saturated with respect to each other. Four independent determinations were used to calculate an average value for the apparent partition coefficient. ${ }^{10}$
(9) H. H. W;llard, L. L. Merritt, Jr., and J. A. Dean, "Instrumental Methods of Analysis." 3rd ed, D. Van Nostrand Co.، Inc.. Princeton, N. J., 1958. p 419.
(10) While the degree of dissociation for the member compounds may not be the same. differences would be expected to be slight, and the apparent partition coefficients were not corrected for dissociation.

Figure 1.- $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ vs. Hammett σ constants for a series of meta. and para-substituted 1-benzyl-3-(N,N-diethylcarbamoyl)piperidine hydrobromides.

Results and Discussion

The $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ values for the member compounds of our series are given, along with the corresponding values for $K_{\mathrm{a}}{ }^{\prime}$, in Table II. We have also listed the pertinent Hammett σ constants recommended by McDaniel and Brown ${ }^{14}$ for use in determining ρ values. The $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ values ranged from 6.90 to 7.98 , and, as anticipated, those substituents with a positive σ value increased acidity while those with a negative σ value decreased acidity relative to compound I. A plot of $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ vs. σ is shown in Figure 1. The slope of the line, determined by the method of least squares, was found to be -1.109 ; ρ is therefore +1.109 ($c f$. Hine 2). The positive value for ρ indicates that dissociation of our compounds is favored by withdrawal of electrons from the reaction site (i.e., the heterocyclic nitrogen). Moreover, comparing the ρ value for our series with that for the dissociation of substituted anilinium ions (ρ value
(11) D. H. McDaniel and H. C. Brown. J. Org. Chem., 23, 420 (1958).
(12) J. Hine. "Physical Organic Chemistry," 2nd ed, McGraw-Hill Book Co., Inc., New York, N. Y.. 1962, pp 85-95.
$+2.767^{13}$), it is evident that the dissociation for omr series is less sensitive to substitnent influences than the dissociation for the anilinium series. ${ }^{12}$ This is contsistenct with the obsemvation ${ }^{14}$ that the insertion of : methylene gronp, betwent the aromatio ring and the reartive conter results in a deerease it the ρ value. Based on datal from several pairs of serice, the average vathe
'lablee HII
Appheni Paptitlon Coefflelents of Slbstitleted
 HYDROBROM1HES

	R	Apy parition (oefficient $\begin{gathered} \left(\mathrm{CHCl}_{5}-\mathrm{H}_{2} \mathrm{O}\right) \\ \pm \mathrm{Sl}^{\prime \prime} \end{gathered}$	$\pi^{\text {b }}$
I	11	0.06 ± 0.02	0
II	$p-\mathrm{OCH}$	1.90 ± 0.04	0.32
III	$m-\mathrm{OCH}_{4}$	$\because .16 \pm 0.12$	0.3.
1 V	$p-\mathrm{CH}_{1}$	3.22 ± 0.07	0.33
\checkmark	${ }_{\text {m }}-\mathrm{CH}_{1}$	$\therefore \mathrm{iff}+0.1!$	().76
l'I	$p-\mathrm{Cl}$	2.8 ± 0.02	1). 42
YII	$m-\mathrm{Cl}$	2.12 ± 0.00	1). 34
VIII	$p-N()$	0.09 ± 0.09	0.01
IS	m-NO.	$0.70=0.02$	$-\mathrm{t}, 10$

" Standard deviation. ${ }^{b} \pi=\log P_{\mathrm{X}}-\log P_{\mathrm{H}}$, where P_{X} is the partition coefficient of a derivalive and P_{g} is that of the parent componnd (I) ${ }^{15}$
for the ratio $\rho_{n=1} \rho_{n=0}$ (where n is the number of methylene units between the ring and the reactive site) was found to be 0.410 . If the ρ value for the dissociation of the substituted anilinium ions is assimed to be a reasonable approximation of that for a series of substituted $1-$ phenyl-3-(ス, N-diethylcarbamoyl)piperidine hydrobromides, the ratio of ρ values ($1.109 / 2.767$) is equal to 0.401 which agrees well with the literature valne.

Apparent partition coefficiente (CHCl_{3}-water) for members of our series are summarized in Table III along with the corresponding calculated π valnes. ${ }^{13}$ It should be noted that the π values for our derivatives decrease in the order $\mathrm{CH}_{3}>\mathrm{Cl}>\mathrm{CH}_{3} \mathrm{O}>\mathrm{NO}_{2}$ (for the para series) and $\mathrm{CH}_{3}>\mathrm{CH}_{3} \mathrm{O}, \mathrm{Cl}>\mathrm{NO}_{3}$ (for the meta series). These sequences tend to be consistent with Albert's classification of the pertinent substituents (i.e., lipophilic, $\mathrm{CH}_{3} \mathrm{Cl}$; slightly hydrophilic, $\mathrm{CH}_{3} \mathrm{O}$. $\left.\mathrm{XO}_{2}\right)^{16}$ considered along with the group moments ${ }^{17}$ of these same substituents taken as an approximate measure of polarity.

Acknowledgments.-We wish to thank Dr. Andrew Lasslo for his interest in this work and for helpful discussions.

[^1]
Acetylenic Carbamates. II. Reactions of 1,1-Diaryl-2-propynyl Carbamates with Acids and Bases

Tiercimed Marth 1s', 1196.
It has recently been reported ${ }^{1}$ that potent antitmon activity was fond for a series of 1,1-diary-2-propynyl carbamates agamst a variety of experimental tmons in mice. Reactions of these componnds under acidic and basic conditions were investigated. and the productthus obtained were tested for antitumor activity to determine if any might be an active metabolite responsible for this activity. The reactions that the diaryl componnds modergo were compared with those reported for the 1,1-dialkyl-2-propynyl carbmmate which were not effective as antitmmor agents.

Treatment with Acids.--1,1-Diphenyl-2-propynyl carbamate ($\mathrm{I}: 1$) was used as a representative of the carbamate series. The eambamate Ia in aqueonethanol, when treated with $\mathrm{H}_{3} \mathrm{SO}_{4}$ below 10°, gave the acetylenic ether TVa (Scheme I). It seems reasonable that the carbonimm ion II is the intermediate in this reaction. Tise of other primary and seeondary aleohols as solvents gave the correponding ethers. When tertiary alcohols were used, these prodncts were mot obtainced. When far was hated at reflux temperather in the presence of $\mathrm{H}_{2} \mathrm{SO} \mathrm{O}_{4}$, the cimmamaldehyde YI wan isolated. The formation of V 1 from l is rebated to the Mever-schaster rearangement ${ }^{2}$ with VI arising from the intermediate V. Suppenting this type of rearrangement is the fact that the acetylenic ether (IV) under identical reaction conditions abo gave VI.s

When In was neated with anhydrons HCl in :m mert solvent, the 3.3 -dichloro-1-propene (Vlllat) was isolated. ${ }^{4}$ When anhydrous HBr was nsed, a prodnet Was , गtamed that was identical with 3:3-dibromo-1.1-diphenyl-1-propene prepared by 'Tan and Todas from 1,1-diphenyl-2-propyn-1-ol and PBr_{3}. These dihatides, on treatment with water, gave the cimmandehyde VI.

The product $1 X^{\prime \prime}$ was isolated from the reaction mixture of lat and concentrated HCl . 'This materinal conld be formed from the dimerization of the proposed intermediate VIl.

Cyelization involving addition of the carbonyl oxygen to the triple bond occured to give XI ${ }^{7}$ when 1,1-dialkyl-

[^2]
[^0]: (1) F'ortion of W. K. Smithfield's thesis submitted to the Graduate School of the l'niversity of Tennessee in partial fulfillment of the requirements for lhe degree Master of Science (Medicinal Chemistry). 'This investigation was silpported, in part, by Grants GB-2381 and GB-4453 from the National science Foundation.
 (2) (a) R. P. Quintana and W. A. Shrader, J. Pharm. Sci., 52, 1186 (1963): (b) R. P. Q1intana, ibid., 53, 1221 (1964): (c) ibid.. 54. 462 (1965): (d) ibid. 54, 573 (1965).
 (3) R. P. Quintana, T. D. Smith. and L. F. h.orenzen, ibid.. 54, i8. (19(6)
 (4) W. P. Purcell, J. G. Beasley, R. P. Quintana, and J. A. Singer, J. Med. ('んени. 9. 297 (1966).
 (5) J. G. Beasley, S. T, Christian, W, R. Smithfieh, and L. L. Williford. ibid., 0, 1003 (1967).

[^1]: (13) E. S. Gonld. "Mechanism and Structure in Organic Chemistry:" 11olt. Rinehart, and Winston, Inc.. New York. N. Y.. 1959, p 222.
 (14) H. F. Jaffé, Ohem. Rev., 63, 191 (19:3).
 (15) T. Fulita. J. Iwasa, and C. Fansch, J. Am. Chem. Soc., 86, 817, [1964).
 (16) A. Abert, "Selective Toxicity," Brd ed, John Wiley and Sons, Inc. New York, N. Y.. 1965. pp 348-349.
 117) The gronp moments are $\mathrm{CH}_{3}, 0.4 ; \quad \mathrm{CH}_{3} \mathrm{O}$, 1.25; (1, 1.58 : NO. 3.48: C. P. Smyth. "Dielectric Behavior and Structure." MeGraw-Mill

[^2]: Chem.. 10. 40 (196:
 (2) K. H. Neyer and 1.. Schuster, Ber., 55, 819 (1922); 1I. Ru1e whed E. Kambli. Helv. Chim. Actis, 9, 672 (1926).
 (3) (a) G. F. Flennion and B. R. Fleck, J. Am. Chem. Soc., 77, 325. (1955). Ib) Hennion anl Fleck found that 1.1-diaryl-2-propyni-1-9ls, when (reated under similar reaction conditions, gave IV and VI.
 (4) It was reworted by N. R. Easton, D. R. Cassady, and R. D. Dillart, J. Org. Chem., 27, 2746 (1962), that treatment of 1,1-diphenyl-2-propyn-1-1t with dry HCl gave 1,3 -dichloro-3.3-diphenyl-1-propene. This prodnec was idetutical with the one bbeaned on treating Ia with HCl. The ultriviolel spectra of these maderials suggest that the correct structure for both prod-
 decomposed.
 (5) H. Tani and F. Tota, Chem. Lid. (london), 1083 (1963).
 (6) (a) P. W. Lanlor and S. R. Landor, J. Chem. Soc., ?:07 (130.3). 1. Landor and landor oltained $I X$ on ereating 1,1-diphenyl-2-propyn-1-bl witi. h hionyl chloride in pyridine.
 i-) D. R. Cassady anti N゙. R. Faston, J. Org. Chem., 39, 9032 (10nst.

